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Abstract. A model is proposed that treats electrons at surfaces as a combination of two-dimensional and
three-dimensional degrees of freedom. This yields a simple formula for the surface state induced resonant
enhancement of the transfer of electrons through a surface. The model also yields analytic approximations
for the transition between two-dimensional and three-dimensional distance laws in the correlations between
electrons in surface states.

PACS. 73.20.At Surface states, band structure, electron density of states – 73.40.-c Electronic transport
in interface structures

1 Introduction

Surface states have been a subject of interest in condensed
matter physics ever since the pioneering work of Tamm [1]
and Shockley [2]. Using a finitely extended Kronig–Penney
model, Tamm demonstrated the existence of surface local-
ized states with damped probability amplitudes both to-
wards the outer and the inner region of a material. In the
simplest cases this can be understood as a consequence of
the fact that their energy levels lie below the outside vac-
uum level and in a band gap of the bulk material. Shockley
then demonstrated how the surface states emerge from
atomic orbitals (see also [3] for first results on this in a
weakly coupled electron approximation). Very useful in-
troductions to the subject can be found in [4–6].

In recent years interest in the theory of surface states
focused e.g. on investigations of their magnetic proper-
ties, exchange splitting, and spin polarization [7–9], and
on calculations of different contributions to the width of
surface states through their interactions with phonons and
bulk and surface electrons, see e.g. [10] and references
there. The subject of correlations between tightly bound
surface electrons was addressed by Müller, Schiller and
Nolting in a semi-infinite chain model [11], and this group
also recently reported results on the appearance of surface
states in low carrier density local-moment semiconducting
films [12,13].

From an experimental point of view angle resolved
photoemission spectroscopy has become a major analy-
sis tool for the measurement of surface band structure
and widths of surface states, see e.g. [4–6] and references
there, and [14–27] for recent work, and after the invention
of scanning tunneling microscopy, tunneling spectroscopy
has become a second major experimental technique for the
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investigation of surface states [28–35]. Other techniques
involve ballistic electron emission [36–39], time-resolved
two-photon photoemission [22,40], and inverse photoemis-
sion [41]. Generically these methods reveal surface energy
bands with effective electron masses in the range of bulk
effective masses.

The purpose of the present paper is two-fold: First
I would like to draw attention to the fact that transla-
tional excitations of non-occupied surface states along a
surface or interface can yield a resonant enhancement of
the energy-dependent penetration probability of electrons
into semiconductors, where the resonance specifically de-
pends on the momentum of the electron parallel to the
surface. Furthermore, the possibility to observe genuine
two-dimensional behavior in apparently two-dimensional
systems is a pertinent subject of interest in condensed
matter physics, and surface states are naturally consid-
ered a prime target in this endeavor: It should be pos-
sible to observe their intrinsically two-dimensional nature
through two-dimensional distance laws in correlation func-
tions of electrons in surface states. The model Hamiltonian
introduced below to account for possible longitudinal ex-
citations of surface states also makes a prediction on the
transition between two-dimensional and three-dimensio-
nal distance laws in the correlations between electrons in
surface states, but the result also indicates that actual
observation of this behavior requires materials with much
stronger curvature in the surface energy bands than in the
bulk conduction band.

The model is introduced in Section 2, and the impact
of the longitudinal modes on electron transmission prob-
abilities is described in Section 3. The transition between
two-dimensional and three-dimensional behavior of corre-
lation functions in the quasi-free electron approximation
of the model is described in Section 4.
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2 The model Hamiltonian

The wavefunction of surface electrons with an energy∆ES

below the conduction band of a semiconductor is damped
outside of the material with a penetration depth

d ≈ 1.95 Å×
(

1 eV
χ+∆ES

) 1
2

,

where χ is the electron affinity of the semiconductor. In-
side the material the surface state wavefunction drops os-
cillatory over a few atomic layers [4,6], because the energy
levels of the surface states are located in the gap between
the valence and conduction band and do not allow for a
corresponding bulk mode.

However, surface electrons can move along the surface
if they are not confined by defects, and this translational
degree of freedom may imply some simple, yet interesting
consequences.

In the simplest possible almost free electron approx-
imation one might attempt to describe an electron in
the presence of a surface by a standard single particle
Hamiltonian, with the surface levels being taken into ac-
count through a localized (e.g. δ-function type) contri-
bution to the potential U . Models for electrons in the
presence of image states are often of this kind. The
Hamiltonian of the corresponding non-relativistic quan-
tum field ψ then has the same form as the first quantized
expectation value:

H =
∫

d2x
∫

dz
(

�
2

2m
(∇ψ+ · ∇ψ + ∂zψ

+ · ∂zψ
)

+ψ+Uψ

)
.

Here and in the sequel all vectors are 2-dimensional vec-
tors parallel to the planar surface, and z is the inward
pointing coordinate orthogonal to the surface.

As it stands this is clearly an unsatisfactory model,
no matter how sophisticated U is chosen, and at least
one might try to take into account the different propa-
gation properties in vacuum and in the bulk through a
z-dependent inverse mass: m−1 = m−1(z) = m−1

0 Θ(−z)+
m−1

∗ Θ(z), where Θ(z) is the Heaviside function, m0 is the
free electron mass in vacuum, and m∗ is an effective mass
for propagation in the bulk below the surface. However,
there are also the surface specific propagation modes with
their own band structure and strict localization in trans-
verse direction, and this motivates us to consider the fol-
lowing approximation for the Hamiltonian describing elec-
tron motion in the presence of a surface:

H =
�

2

2m0

∫
d2x

∫
z<0

dz
(∇ψ+ · ∇ψ + ∂zψ

+ · ∂zψ
)

+
�

2

2m∗

∫
d2x

∫
z>0

dz
(∇ψ+ · ∇ψ + ∂zψ

+ · ∂zψ
)

+
∫

d2x
∫

dz ψ+Uψ +
�

2

2µ

∫
d2x∇ψ+ · ∇ψ

∣∣∣∣
z=0

,

(1)

which corresponds to an effective mass description of elec-
tron motion both on and off the surface. The novel feature
of the Hamiltonian (1) is the inclusion of a two-dimensio-
nal kinetic term to account for electronic motion corre-
sponding to the surface state energy bands.

The surface mass parameter µ has the dimension of a
mass per length and could be converted into an estimate of
an actual surface electron mass through m∗

S ≈ µL, where
L is a measure for the transverse extension of the surface
state wavefunction.

It is trivial, but useful for the later reasoning, to write
down the Lagrangian related to (1):

L =
i�
2

∫
d2x

∫
dz

(
ψ+ψ̇ − ψ̇+ψ

)

− �
2

2m0

∫
d2x

∫
z<0

dz
(∇ψ+ · ∇ψ + ∂zψ

+ · ∂zψ
)

− �
2

2m∗

∫
d2x

∫
z>0

dz
(∇ψ+ · ∇ψ + ∂zψ

+ · ∂zψ
)

−
∫

d2x
∫

dzψ+Uψ − �
2

2µ

∫
d2x∇ψ+ · ∇ψ

∣∣∣∣
z=0

. (2)

This loosely resembles the concept of dimensionally
hybrid action principles, which recently attracted a lot
of interest in cosmology and particle physics, see [42] for
a review. Besides the fact that the present model is non-
relativistic and interpolates between two and three dimen-
sions rather than four-dimensional and five-dimensional
Minkowski spaces, the main difference between our cur-
rent model and the particle physics models concerns the
fact that here we are not led to a superposition of action
principles, but of Hamiltonians from different dimensions.
There is no need and no rationale in the present setting
to include a two-dimensional time derivative term in (2).

The single particle Schrödinger equation correspond-
ing to (2) is

i�ψ̇ = Uψ − �
2

2µ
δ(z)∆ψ − 1

2

(
�

2

m∗
− �

2

m0

)
δ(z)∂zψ

−1
2

(
�

2

m0
Θ(−z) +

�
2

m∗
Θ(z)

)(
∆ψ + ∂2

zψ
)
. (3)

3 Resonant enhancement of electron
transmission through surfaces

The momentum of an electron is denoted by (p, p⊥) =
(�k, �k⊥), where p is the momentum parallel to the planar
surface.

An interesting implication of the presence of the two-
dimensional kinetic term in (1, 3) is a dependence of elec-
tron transmission rates through the surface on the longi-
tudinal momentum p of the incident electron, which can
be understood as the consequence of a resonance condi-
tion between the incident electrons and surface states.
To elucidate this we use a simple potential approxima-
tion U = U(z) for the surface with

U(z) = −wδ(z) − χθ(z). (4)
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Here the vacuum level is chosen to be 0 and χ is the elec-
tron affinity of the bulk material. w is a measure of the
electron affinity of the surface states:

w � (χ+∆ES)L,

where ∆ES is the energy gap between the surface states
and the conduction band (∆ES < 0 for surface states
which overlap with the conduction band).

Equation (3) with the potential (4) yields for the elec-
tron transmission probability through the surface

T =
k⊥k′⊥
m0m∗

[(
k2

2µ
− w

�2

)2

+
1
4

(
k⊥
m0

+
k′⊥
m∗

)2
]−1

, (5)

where �k⊥ is the transverse momentum of the electron
outside of the material and �k′⊥ is the transverse momen-
tum inside the material. They are related to each other
and the longitudinal momentum �k through

�
2k′⊥

2

m∗
= 2χ+

�
2k2

⊥
m0

+ �
2k2

(
1
m0

− 1
m∗

)
· (6)

The surface states lead to an enhancement of the sur-
face transmission probability for low longitudinal momen-
tum �|k| < 2

√
µw, while they suppress transmission at

higher longitudinal momentum. The resonance at

�
2k2 = 2µw � 2m∗

S(χ+∆ES)

would appear as a Breit–Wigner shaped dip in the reflec-
tion rate R = 1−T of electrons incident on the surface, if
the effective mass m∗ is close to m0 (otherwise the depen-
dence of k′⊥ on k would distort the Breit–Wigner shape).
This might provide a way to test applicability of the di-
mensionally hybrid Hamiltonian (1) for a simple modeling
of the impact of surface states on charge transfer through
surfaces.

Expansion of (5) around |k| � √
2µw/� shows that

in terms of intrinsic material properties the width of the
resonance depends on the quality factor

w/µ ∝ (χ+∆ES)/m∗
Sc

2.

4 The transition between two and three
dimensions

If a system were truly two-dimensional the free two-point
correlation functions in it were given by logarithmic func-
tions or appropriate derivatives of it. It is also well known
that the logarithmic infrared divergence of two-dimensio-
nal potentials forces a strictly two-dimensional Coulomb
gas to be electrically neutral.

However, the actual observation of the transition be-
tween two-dimensional and three-dimensional distance
laws for correlations in approximately two-dimensional
systems like thin films seems a very elusive problem.

Here I would like to point out that the model
Hamiltonian (1) allows for the derivation of an equilib-
rium correlation function 〈ψ(x)ψ+(x′)〉 of surface elec-
trons which can be given in closed form and interpolates
between the two-dimensional logarithmic potential and
the three-dimensional 1/r law.

Since the surface states are localized near the surface
we may assume that the contribution from the potential
in (1) for these states effectively reduces to a two-dimen-
sional potential term

∫
d2xψ+uψ|z=0:

H =
�

2

2m0

∫
d2x

∫
z<0

dz
(∇ψ+ · ∇ψ + ∂zψ

+ · ∂zψ
)

+
�

2

2m∗

∫
d2x

∫
z>0

dz
(∇ψ+ · ∇ψ + ∂zψ

+ · ∂zψ
)

+
∫

d2x
(

�
2

2µ
∇ψ+ · ∇ψ + ψ+uψ

)∣∣∣∣
z=0

. (7)

The generating functional for correlation functions on
the surface is1

Z[j, j+] =
∫

dψdψ+ exp
(−βH [ψ, ψ+]

)
× exp

(
−

∫
d2x [ψ+(x, 0)j(x) + j+(x)ψ(x, 0)]

)

= exp
(
−β

∫
d2x

δ

δj(x)
u(x)

δ

δj+(x)

)
Z0[j, j+],

(8)

where the potential term has been split off in the usual
way. The calculation of Z0 is a little trickier than usual
due to the change in mass and δ-function contributions
from the surface:

With the “free” Hamiltonian

H0 = H −
∫

d2xψ+(x, 0)u(x)ψ(x, 0)

and the convention for convolutions

(G ◦ j)(x, z) =
∫

d2x′G(x − x′, z)j(x′)

one finds

βH0[ψ, ψ+] +
∫

d2x [ψ+(x, 0)j(x) + j+(x)ψ(x, 0)] =

−�
2β

2

∫
d2x

∫
dz

(
ψ+ +

2m
�2β

j+ ◦G
)

×
[(

1
m0

Θ(−z) +
1
m∗

Θ(z)
)(
∆+ ∂2

z

)
+

1
µ
δ(z)∆

+
(

1
m∗

− 1
m0

)
δ(z)∂z

](
ψ +

2m
�2β

G ◦ j
)

− 2m
�2β

j+ ◦G ◦ j
∣∣∣∣
z=0

, (9)

1 As usual δ/δj acts from the right if ψ is fermionic.
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where

m =
2m0m∗
m0 +m∗

and the Green’s function is defined through(
m

m0
Θ(−z) +

m

m∗
Θ(z)

)(
∆+ ∂2

z

)
G(x, z)

+
m

µ
δ(z)∆G(x, 0) +

(
m

m∗
− m

m0

)
δ(z)∂zG(x, z)

= −δ(x)δ(z). (10)

This yields

Z0[j, j+] ∝ exp
(

2m
�2β

j+ ◦G ◦ j
∣∣∣∣
z=0

)
=

exp
(

2m
�2β

∫
d2x

∫
d2x′ j+(x)G(x − x′, 0)j(x′)

)
. (11)

Equation (10) can be solved with a Fourier ansatz

G(x, z)=
1

(2π)3

∫
d2k

∫
dk⊥G(k, k⊥) exp[i(k · x + k⊥z)].

(12)

Insertion yields with∫ ±∞

0

dz exp(ik′⊥z) = iP 1
k′⊥

± πδ(k′⊥)

the equation

m

2π
P

∫
dk′⊥

[
k2

µ
+ i

(
1
m0

− 1
m∗

)(
k′⊥ − 1

k′⊥

)]
G(k, k′⊥)

+
(
k2 + k2

⊥
)
G(k, k⊥) = 1. (13)

This determines the k⊥-dependence of the propagator

G(k, k⊥) =
f(k)

k2 + k2
⊥
, (14)

and with

1
π

∫ ∞

−∞
dk′⊥

1
k2 + k′2⊥

=
1
k

we find the Green’s function

G(k, k⊥) =
1

(1 + k
)(k2 + k2
⊥)
, (15)

where the length scale 
 is defined through


 =
m

2µ
·

In the transverse coordinate (15) reads

G(k, z) =
1

2k(1 + 
k)
exp(−k|z|). (16)

Fig. 1. The solid line is the Green’s function (18) of the sur-
face electrons as a function of x = r/�, in units of �−1. The
upper dashed line is the three-dimensional 1/4πr distance law,
and the lower dashed line is the two-dimensional logarithmic
Green’s function.

The resulting solution in configuration space is2

G(x, z) =
1

8π2

∫ ∞

0

dk
∫ 2π

0

dϕ
exp[k(ir cosϕ− |z|)]

1 + k


=
1
4π

∫ ∞

0

dk
exp(−k|z|)

1 + k

J0(kr). (17)

The perturbation series (8, 11) requires the Green’s
function on the surface, which can be expressed as a linear
combination of a Struve function and a Bessel function of
the second kind:

G(x) = G(x, z)
∣∣∣
z=0

=
1
8


[
H0

(r



)
− Y0

(r



)]
· (18)

This interpolates between two-dimensional and three-di-
mensional distance laws

r 	 
 : G(x) =
1

4π


[
−γ − ln

( r

2


)
+
r



+ O

(
r2


2

)]
,

r 
 
 : G(x) =
1

4πr

[
1 − 
2

r2
+ O

(

4

r4

)]
·

G(x) along with the limiting cases is plotted in Fig-
ure 1.

5 Conclusion

The Hamiltonian (1) provides a simple model for electrons
which can propagate both in the bulk and through sur-
face modes. It predicts a resonant enhancement of charge

2 I follow the conventions of [43] for Bessel and Struve func-
tions.
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transfer through a surface if the kinetic energy in the mo-
tion parallel to the surface matches the energy level of a
surface state.

It also allows for an analytic calculation of the corre-
lation function

〈ψ(x)ψ+(x′)〉∣∣
U=0

=
2m
�2β

G(x − x′)

between quasi-free surface electrons, which explicitly in-
terpolates between the usual distance laws for free elec-
trons in two and in three dimensions. However, the tran-
sition scale


 =
m0m∗

(m0 +m∗)µ
� m0m∗

(m0 +m∗)m∗
S

L

will usually be of the order of the transverse extension of
the surface state wavefunctions. Experimental verification
of the two-dimensional short-distance behavior of surface
electron correlations as predicted in (18) thus will require
materials with m∗

S 	 m∗ to ensure 

 L.
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